Novel in-house knowledge-based automated planning system for lung cancer treated with intensity-modulated radiotherapy

Author:

Shao Yan,Guo Jindong,Wang Jiyong,Huang Ying,Gan Wutian,Zhang Xiaoying,Wu Ge,Sun Dong,Gu Yu,Gu Qingtao,Yue Ning Jeff,Yang Guanli,Xie Guotong,Xu Zhiyong

Abstract

Abstract Purpose The goal of this study was to propose a knowledge-based planning system which could automatically design plans for lung cancer patients treated with intensity-modulated radiotherapy (IMRT). Methods and materials From May 2018 to June 2020, 612 IMRT treatment plans of lung cancer patients were retrospectively selected to construct a planning database. Knowledge-based planning (KBP) architecture named αDiar was proposed in this study. It consisted of two parts separated by a firewall. One was the in-hospital workstation, and the other was the search engine in the cloud. Based on our previous study, A‑Net in the in-hospital workstation was used to generate predicted virtual dose images. A search engine including a three-dimensional convolutional neural network (3D CNN) was constructed to derive the feature vectors of dose images. By comparing the similarity of the features between virtual dose images and the clinical dose images in the database, the most similar feature was found. The optimization parameters (OPs) of the treatment plan corresponding to the most similar feature were assigned to the new plan, and the design of a new treatment plan was automatically completed. After αDiar was developed, we performed two studies. The first retrospective study was conducted to validate whether this architecture was qualified for clinical practice and involved 96 patients. The second comparative study was performed to investigate whether αDiar could assist dosimetrists in improving the quality of planning for the patients. Two dosimetrists were involved and designed plans for only one trial with and without αDiar; 26 patients were involved in this study. Results The first study showed that about 54% (52/96) of the automatically generated plans would achieve the dosimetric constraints of the Radiation Therapy Oncology Group (RTOG) and about 93% (89/96) of the automatically generated plans would achieve the dosimetric constraints of the National Comprehensive Cancer Network (NCCN). The second study showed that the quality of treatment planning designed by junior dosimetrists was improved with the help of αDiar. Conclusions Our results showed that αDiar was an effective tool to improve planning quality. Over half of the patients’ plans could be designed automatically. For the remaining patients, although the automatically designed plans did not fully meet the clinical requirements, their quality was also better than that of manual plans.

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3