Abstract
Abstract
Purpose
Fibroblast activation protein (FAP) detected by positron-emission tomography (PET) using fibroblast activation protein inhibitor (FAPI) appears to be a promising target for cancer imaging, staging, and therapy, providing added value and strength as a complement to [18F]fluorodeoxyglucose (FDG) in cancer imaging. We recently introduced a combined single-session/dual-tracer protocol with [18F]FDG and [68Ga]Ga-FAPI for cancer imaging and staging. Malignant tissue visualization and target-to-background uptake ratios (TBRs) as well as functional tumor volume (FTV) and gross tumor volume (GTV) were assessed in the present study with single-tracer [18F]FDG PET/computed tomography (CT) and with dual-tracer [18F]FDG&[68Ga]Ga-FAPI-46 PET/CT.
Methods
A total of 19 patients with head and neck and gastrointestinal cancers received initial [18F]FDG-PET/CT followed by dual-tracer PET/CT after additional injection of [68Ga]Ga-FAPI-46 during the same medical appointment (on average 13.9 ± 12.3 min after injection of [18F]FDG). Two readers visually compared detection rate of malignant tissue, TBR, FTV, and GTV for tumor and metastatic tissue in single- and dual-tracer PET/CT.
Results
The diagnostic performance of dual-tracer compared to single-tracer PET/CT was equal in 13 patients and superior in 6 patients. The mean TBRs of tumors and metastases in dual-tracer PET/CTs were mostly higher compared to single-tracer PET/CT using maximal count rates (CRmax). GTV and FTV were significantly larger when measured on dual-tracer compared to single-tracer PET/CT.
Conclusion
Dual-tracer PET/CT with [18F]FDG and [68Ga]Ga-FAPI-46 showed better visualization due to a generally higher TBR and larger FTV and GTV compared to [18F]FDG-PET/CT in several tumor entities, suggesting that [68Ga]Ga-FAPI-46 provides added value in pretherapeutic staging.
Funder
SOFIE
Universitätsklinikum Köln
Publisher
Springer Science and Business Media LLC
Subject
Oncology,Radiology, Nuclear Medicine and imaging
Reference35 articles.
1. Santi A, Kugeratski FG, Zanivan S (2018) Cancer associated Fibroblasts: the architects of stroma remodeling. Proteomics 18:e1700167. https://doi.org/10.1002/pmic.201700167
2. Garin-Chesa P, Old LJ, Rettig WJ (1990) Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci U S A 87:7235–7239. https://doi.org/10.1073/pnas.87.18.7235
3. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W et al (2019) (68)ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med 60:801–805. https://doi.org/10.2967/jnumed.119.227967
4. Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Ozer HL, Schwab M et al (1993) Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin. Cancer Res 53:3327–3335
5. Windisch P, Zwahlen DR, Koerber SA, Giesel FL, Debus J, Haberkorn U et al (2020) Clinical results of fibroblast activation protein (FAP) specific PET and implications for radiotherapy planning: systematic review. Cancers. https://doi.org/10.3390/cancers12092629
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献