1. Li, W.D., Sun, Z.Z., Zhao, L.: An analysis for a high order difference scheme for numerical solution to
$$u_{tt}=A(x, t)u_{xx}+F( x, t, u, u_{t}, u_{x})$$
u
t
t
=
A
(
x
,
t
)
u
x
x
+
F
(
x
,
t
,
u
,
u
t
,
u
x
)
. Numer. Methods Partial Differ. Equ. 23, 484–498 (2007)
2. Goodman, T.N.T.: Shape preserving interpolation by curves. In: Levesley, J., Anderson, I.J., Mason, J.C. (eds.) Algorithms for Approximations, vol. IV, pp. 24–35. University of Huddersfield, Huddersfield (2002)
3. Costantini, P.: Curve and surface construction using variable degree polynomial splines. Comput. Aided Geom. Des. 24, 426–446 (2000)
4. Kvasov, B.I.: Algorithms for shape preservinglocal approximation with automatic selection of tension parameters. Comput. Aided Des. 17, 17–37 (2000)
5. Schweikert, D.G.: An interpolation curve using a spline in tension. J. Math. Phys. 45, 312–317 (1966)