Abstract
AbstractIntensive care unit (ICU) patients develop stress induced insulin resistance causing hyperglycemia, large glucose variability and hypoglycemia. These glucose metrics have all been associated with increased rates of morbidity and mortality. The only way to achieve safe glucose control at a lower glucose range (e.g., 4.4–6.6 mmol/L) will be through use of an autonomous closed loop glucose control system (artificial pancreas). Our goal with the present study was to assess the safety and performance of an artificial pancreas system, composed of the EIRUS (Maquet Critical Care AB) continuous glucose monitor (CGM) and novel artificial intelligence-based glucose control software, in a swine model using unannounced hypo- and hyperglycemia challenges. Fourteen piglets (6 control, 8 treated) underwent sequential unannounced hypoglycemic and hyperglycemic challenges with 3 IU of NovoRapid and a glucose infusion at 17 mg/kg/min over the course of 5 h. In the Control animals an experienced ICU physician used every 30-min blood glucose values to maintain control to a range of 4.4–9 mmol/L. In the Treated group the artificial pancreas system attempted to maintain blood glucose control to a range of 4.4–6.6 mmol/L. Five of six Control animals and none of eight Treated animals experienced severe hypoglycemia (< 2.22 mmol/L). The area under the curve 3.5 mmol/L was 28.9 (21.1–54.2) for Control and 4.8 (3.1–5.2) for the Treated animals. The total percent time within tight glucose control range, 4.4–6.6 mmol/L, was 32.8% (32.4–47.1) for Controls and 55.4% (52.9–59.4) for Treated (p < 0.034). Data are median and quartiles. The artificial pancreas system abolished severe hypoglycemia and outperformed the experienced ICU physician in avoiding clinically significant hypoglycemic excursions.
Publisher
Springer Science and Business Media LLC
Subject
Anesthesiology and Pain Medicine,Critical Care and Intensive Care Medicine,Health Informatics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献