Optical crosstalk and other forms of light interference in pulse oximeter comparison studies

Author:

Kyriacou Panicos A.

Abstract

AbstractPurpose: Pulse oximeter accuracy is important for the quality and safety of patient care. Methodological errors occurring during pulse oximeter accuracy studies can confound results. One potential source of error during pulse oximeter comparison studies is optical interference due to sensor-to-sensor crosstalk. Optical crosstalk can occur whenever pulse oximeter sensors are tested in close proximity of one another, as occurs during pulse oximeter comparison studies. Methods: This publication represents the first comprehensive review of sensor-to-sensor crosstalk and other forms of optical interference during pulse oximeter comparison studies. A review of the published literature was undertaken to elucidate the mechanism of optical crosstalk, along with other forms of optical interference, and a solution (shielding) is offered. Results: When pulse oximeter sensors are placed close to each other, as occurs during comparison studies, the red and near-infrared light used can also enter an adjacent sensor and lead to error. Pulse oximeter manufacturers have designed systems to reject some forms of optical interference, such as ambient light. However, light emanating from adjacent sensors during comparison studies can cause artifact, and this can be exacerbated by sensor malposition. Proper sensor placement and use of optical shielding are the best solutions to prevent crosstalk. Conclusions: Crosstalk and other forms of optical interference can corrupt pulse oximeter readings. Proper sensor placement and use of optical shielding of sensors are crucial steps to help protect the integrity of the data. Studies to further characterize crosstalk during pulse oximeter comparison studies are needed.

Publisher

Springer Science and Business Media LLC

Subject

Anesthesiology and Pain Medicine,Critical Care and Intensive Care Medicine,Health Informatics,Anesthesiology and Pain Medicine,Critical Care and Intensive Care Medicine,Health Informatics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3