A capaciflector provides continuous and accurate respiratory rate monitoring for patients at rest and during exercise

Author:

Hayward NickORCID,Shaban Mahdi,Badger James,Jones Isobel,Wei Yang,Spencer Daniel,Isichei Stefania,Knight Martin,Otto James,Rayat Gurinder,Levett Denny,Grocott Michael,Akerman Harry,White Neil

Abstract

AbstractRespiratory rate (RR) is a marker of critical illness, but during hospital care, RR is often inaccurately measured. The capaciflector is a novel sensor that is small, inexpensive, and flexible, thus it has the potential to provide a single-use, real-time RR monitoring device. We evaluated the accuracy of continuous RR measurements by capaciflector hardware both at rest and during exercise. Continuous RR measurements were made with capaciflectors at four chest locations. In healthy subjects (n = 20), RR was compared with strain gauge chest belt recordings during timed breathing and two different body positions at rest. In patients undertaking routine cardiopulmonary exercise testing (CPET, n = 50), RR was compared with pneumotachometer recordings. Comparative RR measurement bias and limits of agreement were calculated and presented in Bland–Altman plots. The capaciflector was shown to provide continuous RR measurements with a bias less than 1 breath per minute (BPM) across four chest locations. Accuracy and continuity of monitoring were upheld even during vigorous CPET exercise, often with narrower limits of agreement than those reported for comparable technologies. We provide a unique clinical demonstration of the capaciflector as an accurate breathing monitor, which may have the potential to become a simple and affordable medical device.Clinical trial number: NCT03832205 https://clinicaltrials.gov/ct2/show/NCT03832205 registered February 6th, 2019.

Publisher

Springer Science and Business Media LLC

Subject

Anesthesiology and Pain Medicine,Critical Care and Intensive Care Medicine,Health Informatics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3