Abstract
AbstractSupport-vector machines (SVMs) can potentially improve patient monitoring during nitrous oxide anaesthesia. By elucidating the effects of low-dose nitrous oxide on the power spectra of multi-channel EEG recordings, we quantified the degree to which these effects generalise across participants. In this single-blind, cross-over study, 32-channel EEG was recorded from 12 healthy participants exposed to 0, 20, 30 and 40% end-tidal nitrous oxide. Features of the delta-, theta-, alpha- and beta-band power were used within a 12-fold, participant-wise cross-validation framework to train and test two SVMs: (1) binary SVM classifying EEG during 0 or 40% exposure (chance = 50%); (2) multi-class SVM classifying EEG during 0, 20, 30 or 40% exposure (chance = 25%). Both the binary (accuracy 92%) and the multi-class (accuracy 52%) SVMs classified EEG recordings at rates significantly better than chance (p < 0.001 and p = 0.01, respectively). To determine the relative importance of frequency band features for classification accuracy, we systematically removed features before re-training and re-testing the SVMs. This showed the relative importance of decreased delta power and the frontal region. SVM classification identified that the most important effects of nitrous oxide were found in the delta band in the frontal electrodes that was consistent between participants. Furthermore, support-vector classification of nitrous oxide dosage is a promising method that might be used to improve patient monitoring during nitrous oxide anaesthesia.
Funder
Office of Naval Research Global
University of Auckland
Publisher
Springer Science and Business Media LLC
Subject
Anesthesiology and Pain Medicine,Critical Care and Intensive Care Medicine,Health Informatics