Quantifying physiological stability in the general ward using continuous vital signs monitoring: the circadian kernel density estimator

Author:

Rasmussen Søren S.ORCID,Grønbæk Katja K.ORCID,Mølgaard JesperORCID,Haahr-Raunkjær CamillaORCID,Meyhoff Christian S.ORCID,Aasvang Eske K.ORCID,Sørensen Helge B. D.ORCID

Abstract

AbstractTechnological advances seen in recent years have introduced the possibility of changing the way hospitalized patients are monitored by abolishing the traditional track-and-trigger systems and implementing continuous monitoring using wearable biosensors. However, this new monitoring paradigm raise demand for novel ways of analyzing the data streams in real time. The aim of this study was to design a stability index using kernel density estimation (KDE) fitted to observations of physiological stability incorporating the patients’ circadian rhythm. Continuous vital sign data was obtained from two observational studies with 491 postoperative patients and 200 patients with acute exacerbation of chronic obstructive pulmonary disease. We defined physiological stability as the last 24 h prior to discharge. We evaluated the model against periods of eight hours prior to events defined either as severe adverse events (SAE) or as a total score in the early warning score (EWS) protocol of ≥ 6,  ≥ 8, or ≥ 10. The results found good discriminative properties between stable physiology and EWS-events (area under the receiver operating characteristics curve (AUROC): 0.772–0.993), but lower for the SAEs (AUROC: 0.594–0.611). The time of early warning for the EWS events were 2.8–5.5 h and 2.5 h for the SAEs. The results showed that for severe deviations in the vital signs, the circadian KDE model can alert multiple hours prior to deviations being noticed by the staff. Furthermore, the model shows good generalizability to another cohort and could be a simple way of continuously assessing patient deterioration in the general ward.

Funder

Innovationsfonden

Kræftens Bekæmpelse

Copenhagen Center for Health Technology

Radiometer Medical Aps

Isansys Ltd

A. P. Møller Foundation

Technical University of Denmark

Publisher

Springer Science and Business Media LLC

Subject

Anesthesiology and Pain Medicine,Critical Care and Intensive Care Medicine,Health Informatics,Anesthesiology and Pain Medicine,Critical Care and Intensive Care Medicine,Health Informatics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3