Induction of Noonan syndrome-specific human-induced pluripotent stem cells under serum-, feeder-, and integration-free conditions
-
Published:2020-11-02
Issue:10
Volume:56
Page:888-895
-
ISSN:1071-2690
-
Container-title:In Vitro Cellular & Developmental Biology - Animal
-
language:en
-
Short-container-title:In Vitro Cell.Dev.Biol.-Animal
Author:
Hamada Atsuko, Akagi Eri, Obayashi Fumitaka, Yamasaki Sachiko, Koizumi Koichi, Ohtaka Manami, Nishimura Ken, Nakanishi Mahito, Toratani Shigeaki, Okamoto TetsujiORCID
Abstract
AbstractNoonan syndrome is an autosomal dominant developmental disorder. Although it is relatively common, and its phenotypical variability is well documented, its pathophysiology is not fully understood. Previously, with the aim of revealing the pathogenesis of genetic disorders, we reported the induction of cleidocranial dysplasia-specific human-induced pluripotent stem cells (hiPSCs) from patient’s dental pulp cells (DPCs) under serum-free, feeder-free, and integration-free conditions. Notably, these cells showed potential for application to genetic disorder disease models. Furthermore, using similar procedures, we reported the induction of hiPSCs derived from peripheral blood mononuclear cells (PBMCs) of healthy volunteers. These methods are beneficial, because they are carried out without invasive and painful biopsies. Using those procedures, we reprogrammed DPCs and PBMCs that were derived from a patient with Noonan syndrome (NS) to establish NS-specific hiPSCs (NS-DPC-hiPSCs and NS-PBMC-hiPSCs, respectively). The induction efficiency of NS-hiPSCs was higher than that of WT-hiPSCs. We hypothesize that this was caused by high NANOG expression. Here, we describe the experimental results and findings related to NS-hiPSCs. This is the first report on the establishment of NS-hiPSCs and their disease modeling.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,General Medicine
Reference18 articles.
1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with Image J. Biophoton Int 11(7)36–42 2. Fukuta M, Nakai Y, Kirino K, Nakagawa M, Sekiguchi K, Nagata S, Matsumoto Y, Yamamoto T, Umeda K, Heike T, Okumura N, Koizumi N, Sato T, Nakahata T, Saito M, Otsuka T, Kinoshita S, Ueno M, Ikeya M, Toguchida J (2014) Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media. PLoS One 9:e112291 3. Furue MK, Na J, Jackson JP, Okamoto T, Jones M, Baker M, Hata RI, Moore HD, Sato JD, Andrews PW (2008) Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci U S A 105:13409–13414 4. Hamada A, Akagi E, Yamasaki S, Nakatao H, Obayashi F, Ohtaka M, Nishimura K, Nakanishi M, Toratani S, Okamoto T (2020) Induction of integration-free human-induced pluripotent stem cells under serum- and feeder-free conditions. In vitro cellular & developmental biology Animal 56:85–95 5. Hayashi Y, Caboni L, Das D, Yumoto F, Clayton T, Deller MC, Nguyen P, Farr CL, Chiu HJ, Miller MD, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Tomoda K, Conklin BR, Wilson IA, Yamanaka S, Fletterick RJ (2015) Structure-based discovery of NANOG variant with enhanced properties to promote self-renewal and reprogramming of pluripotent stem cells. Proc Natl Acad Sci U S A 112:4666–4671
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|