Abstract
Abstract
Purpose
The neutrophil-to-lymphocyte ratio (NLR) is a marker of systemic inflammation that has been reported to be associated with survival after chronic disease diagnoses, including lung cancer. We hypothesized that the inflammatory profile reflected by pre-diagnosis NLR, rather than the well-studied pre-treatment NLR at diagnosis, may be associated with increased mortality after lung cancer is diagnosed in high-risk heavy smokers.
Methods
We examined associations between pre-diagnosis methylation-derived NLR (mdNLR) and lung cancer-specific and all-cause mortality in 279 non-small lung cancer (NSCLC) and 81 small cell lung cancer (SCLC) cases from the β-Carotene and Retinol Efficacy Trial (CARET). Cox proportional hazards models were adjusted for age, sex, smoking status, pack years, and time between blood draw and diagnosis, and stratified by stage of disease. Models were run separately by histotype.
Results
Among SCLC cases, those with pre-diagnosis mdNLR in the highest quartile had 2.5-fold increased mortality compared to those in the lowest quartile. For each unit increase in pre-diagnosis mdNLR, we observed 22–23% increased mortality (SCLC-specific hazard ratio [HR] = 1.23, 95% confidence interval [CI]: 1.02, 1.48; all-cause HR = 1.22, 95% CI 1.01, 1.46). SCLC associations were strongest for current smokers at blood draw (Interaction Ps = 0.03). Increasing mdNLR was not associated with mortality among NSCLC overall, nor within adenocarcinoma (N = 148) or squamous cell carcinoma (N = 115) case groups.
Conclusion
Our findings suggest that increased mdNLR, representing a systemic inflammatory profile on average 4.5 years before a SCLC diagnosis, may be associated with mortality in heavy smokers who go on to develop SCLC but not NSCLC.
Funder
National Cancer Institute
Munck-Pfefferkorn Fund at Dartmouth College
Huntsman Cancer Foundation
Kansas IDeA Network of Biomedical Research Excellence Bioinformatics Core
National Institute of General Medical Sciences
National Center for Advancing Translational Sciences
Publisher
Springer Science and Business Media LLC
Reference67 articles.
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424
2. Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds) (1975–2017) SEER Cancer Statistics Review. National Cancer Institute, Bethesda, MD
3. Howlader N, Forjaz G, Mooradian MJ et al (2020) The effect of advances in lung-cancer treatment on population mortality. N Engl J Med 383:640–649
4. Islami F, Goding Sauer A, Miller KD et al (2018) Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J Clin 68:31–54
5. Alberg AJ, Brock MV, Ford JG, Samet JM, Spivack SD (2013) Epidemiology of lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143:e1S-e29S
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献