Deep learning with a convolutional neural network model to differentiate renal parenchymal tumors: a preliminary study
Author:
Publisher
Springer Science and Business Media LLC
Subject
Urology,Gastroenterology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Link
https://link.springer.com/content/pdf/10.1007/s00261-021-02981-5.pdf
Reference40 articles.
1. Kim Y, Sung D, Sim K, et al. (2017) Renal tumors with low signal intensities on T2-weighted MR image: radiologic-pathologic correlation. Abdom Radiol (NY) 42:2108-2118.
2. Farrell C, Noyes S, Tourojman M, Lane B. (2015) Renal angiomyolipoma: preoperative identification of atypical fat-poor AML. Curr Urol Rep 16:12.
3. Mehta V, Venkataraman G, Antic T, Rubinas TC, Le Pool IC, Picken MM. (2013) Renal angiomyolipoma, fat-poor variant – a clinicopathologic mimicker of malignancy. Virchows Arch 463:41-46.
4. Ljungberg B, Bensalah K, Canfield S, et al. (2015) EAU Guidelines on renal cell carcinoma: 2014 update. Eur Urol 67:913-924.
5. Tzortzakakis A, Gustafsson O, Karlsson M, Ekström-Ehn L, Ghaffarpour R, Axelsson R. (2017) Visual evaluation and differentiation of renal oncocytomas from renal cell carcinomas by means of 99mTc-sestamibi SPECT/CT. Ejnmmi Res 7:29.
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Convolutional neural networks for the differentiation between benign and malignant renal tumors with a multicenter international computed tomography dataset;Insights into Imaging;2024-01-25
2. Fully Automated Deep Learning-Based Renal Mass Detection on Multi-Parametric MRI;IEEE Access;2024
3. Application of Artificial Intelligence in Abdominal Imaging;Artificial Intelligence in Medical Imaging in China;2024
4. The Application Value of Traditional Image and Texture Analysis on Preoperative Fuhrman Grading Evaluation of Renal Carcinoma;Advances in Clinical Medicine;2024
5. Deep Learning Approaches Applied to Image Classification of Renal Tumors: A Systematic Review;Archives of Computational Methods in Engineering;2023-09-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3