Analysis of neural networks for routine classification of sixteen ultrasound upper abdominal cross sections

Author:

Lawley AlistairORCID,Hampson Rory,Worrall Kevin,Dobie Gordon

Abstract

Abstract Purpose Abdominal ultrasound screening requires the capture of multiple standardized plane views as per clinical guidelines. Currently, the extent of adherence to such guidelines is dependent entirely on the skills of the sonographer. The use of neural network classification has the potential to better standardize captured plane views and streamline plane capture reducing the time burden on operators by combatting operator variability. Methods A dataset consisting of 16 routine upper abdominal ultrasound scans from 64 patients was used to test the classification accuracy of 9 neural networks. These networks were tested on both a small, idealised subset of 800 samples as well as full video sweeps of the region of interest using stratified sampling and transfer learning. Results The highest validation accuracy attained by both GoogLeNet and InceptionV3 is 83.9% using transfer learning and the large sample set of 26,294 images. A top-2 accuracy of 95.1% was achieved using InceptionV3. Alexnet attained the highest accuracy of 79.5% (top-2 of 91.5%) for the smaller sample set of 800 images. The neural networks evaluated during this study were also successfully able to identify problematic individual cross sections such as between kidneys, with right and left kidney being accurately identified 78.6% and 89.7%, respectively. Conclusion Dataset size proved a more important factor in determining accuracy than network selection with more complex neural networks providing higher accuracy as dataset size increases and simpler linear neural networks providing better results where the dataset is small.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Urology,Gastroenterology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3