Metal implants on abdominal CT: does split-filter dual-energy CT provide additional value over iterative metal artifact reduction?

Author:

Wichtmann Hildegard M.ORCID,Laukamp Kai R.,Manneck Sebastian,Appelt Konrad,Stieltjes Bram,Boll Daniel T.,Benz Matthias R.,Obmann Markus M.ORCID

Abstract

Abstract Purpose To assess image quality and metal artifact reduction in split-filter dual-energy CT (sfDECT) of the abdomen with hip or spinal implants using virtual monoenergetic images (VMI) and iterative metal artifact reduction algorithm (iMAR). Methods 102 portal-venous abdominal sfDECTs of patients with hip (n = 71) or spinal implants (n = 31) were included in this study. Images were reconstructed as 120kVp-equivalent images (Mixed) and VMI (40–190 keV), with and without iMAR. Quantitative artifact and image noise was measured using 12 different ROIs. Subjective image quality was rated by two readers using a five-point Likert-scale in six categories, including overall image quality and vascular contrast. Results Lowest quantitative artifact in both hip and spinal implants was measured in VMI190keV-iMAR. However, it was not significantly lower than in MixediMAR (for all ROIs, p = 1.00), which were rated best for overall image quality (hip: 1.00 [IQR: 1.00–2.00], spine: 3.00 [IQR:2.00–3.00]). VMI50keV-iMAR was rated best for vascular contrast (hip: 1.00 [IQR: 1.00–2.00], spine: 2.00 [IQR: 1.00–2.00]), which was significantly better than Mixed (both, p < 0.001). VMI50keV-iMAR provided superior overall image quality compared to Mixed for hip (1.00 vs 2.00, p < 0.001) and similar diagnostic image quality for spinal implants (2.00 vs 2.00, p = 0.51). Conclusion For abdominal sfDECT with hip or spinal implants MixediMAR images should be used. High keV VMI do not further improve image quality. IMAR allows the use of low keV images (VMI50keV) to improve vascular contrast, compared to Mixed images. Graphical abstract

Funder

University of Basel

Publisher

Springer Science and Business Media LLC

Subject

Urology,Gastroenterology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3