Abstract
Abstract
Purpose
To investigate the value of imaging parameters derived from T1 relaxation times in the rotating frame (T1ρ or T1rho), diffusion kurtosis imaging (DKI) and intravoxel incoherent motion (IVIM) in assessment of liver fibrosis in rats and propose an optimal diagnostic model based on multiparametric MRI.
Methods
Thirty rats were divided into one control group and four fibrosis experimental groups (n = 6 for each group). Liver fibrosis was induced by administering thioacetamide (TAA) for 2, 4, 6, and 8 weeks. T1ρ, mean kurtosis (MK), mean diffusivity (MD), perfusion fraction (f), true diffusion coefficient (D), and pseudo-diffusion coefficient (D*) were measured and compared among different fibrosis stages. An optimal diagnostic model was established and the diagnostic efficiency was evaluated by receiver operating characteristic (ROC) curve analysis.
Results
The mean AUC values, sensitivity, and specificity of T1ρ and MD derived from DKI across all liver fibrosis stages were comparable but much higher than those of other imaging parameters (0.954, 92.46, 91.85 for T1ρ; 0.949, 92.52, 91.24 for MD). The model combining T1ρ and MD exhibited better diagnostic performance with higher AUC values than any individual method for staging liver fibrosis (≥ F1: 1.000 (0.884–1.000); ≥ F2: 0.935 (0.782–0.992); ≥ F3: 0.982 (0.852–1.000); F4: 0.986 (0.859–1.000)).
Conclusion
Among the evaluated imaging parameters, T1ρ and MD were superior for differentiating varying liver fibrosis stages. The model combining T1ρ and MD was promising to be a credible diagnostic biomarker to detect and accurately stage liver fibrosis.
Graphical abstract
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hubei Province
Publisher
Springer Science and Business Media LLC