Establishment of a multi-parameters MRI model for predicting small lymph nodes metastases (<10 mm) in patients with resected pancreatic ductal adenocarcinoma

Author:

Shi Yan-Jie,Liu Bo-Nan,Li Xiao-Ting,Zhu Hai-Tao,Wei Yi-Yuan,Zhao Bo,Sun Shao-Shuai,Sun Ying-ShiORCID,Hao Chun-Yi

Abstract

Abstract Purpose To evaluate the potential role of MR findings and DWI parameters in predicting small regional lymph nodes metastases (with short-axis diameter < 10 mm) in pancreatic ductal adenocarcinomas (PDACs). Methods A total of 127 patients, 82 in training group and 45 in testing group, with histopathologically diagnosed PDACs who underwent pancreatectomy were retrospectively analyzed. PDACs were divided into two groups of positive and negative lymph node metastases (LNM) based on the pathological results. Pancreatic cancer characteristics, short axis of largest lymph node, and DWI parameters of PDACs were evaluated. Results Univariate and multivariate analyses showed that extrapancreatic distance of tumor invasion, short-axis diameter of the largest lymph node, and mean diffusivity of tumor were independently associated with small LNM in patients with PDACs. The combining MRI diagnostic model yielded AUCs of 0.836 and 0.873, and accuracies of 81.7% and 80% in the training and testing groups. The AUC of the MRI model for predicting LNM was higher than that of subjective MRI diagnosis in the training group (rater 1, P = 0.01; rater 2, 0.008) and in a testing group (rater 1, P = 0.036; rater 2, 0.024). Comparing the subjective diagnosis, the error rate of the MRI model was decreased. The defined LNM-positive group by the MRI model showed significantly inferior overall survival compared to the negative group (P = 0.006). Conclusions The MRI model showed excellent performance for individualized and noninvasive prediction of small regional LNM in PDACs. It may be used to identify PDACs with small LNM and contribute to determining an appropriate treatment strategy for PDACs.

Funder

Beijing Natural Science Foundation

Beijing Municipal Administration of Hospitals Incubating Program

National Natural Science Foundation of China

Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support

Beijing Hospitals Authority Ascent Plan

PKU-Baidu Fund

Publisher

Springer Science and Business Media LLC

Subject

Urology,Gastroenterology,Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3