Differentiation of gastric schwannomas from gastrointestinal stromal tumors by CT using machine learning
Author:
Publisher
Springer Science and Business Media LLC
Subject
Urology,Gastroenterology,Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Link
https://link.springer.com/content/pdf/10.1007/s00261-020-02797-9.pdf
Reference26 articles.
1. Sarlomo-Rikala M, Miettinen M. Gastric schwannoma: a clinicopathological analysis of six cases. Histopathology. 1995; 27(4):355-360
2. Shah AS, Rathi PM, Somani VS, et al. Gastric schwannoma: a benign tumor often misdiagnosed as gastrointestinal stromal tumor. Clin Pract. 2015; 5(3):775
3. Miettinen M, Majidi M, Lasota J. Pathology and diagnostic criteria of gastrointestinal stromal tumors (GISTs): a review. Eur J Cancer. 2002; 38: Suppl 5:S39-S51
4. Tzen CY, Mau BL. Analysis of CD117-negative gastrointestinal stromal tumors. World J Gastroenterol. 2005; 11(7):1052-1055
5. Miettinen M, Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol. 2006; 23(2):70-83
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Preoperative differentiation of gastric schwannomas and gastrointestinal stromal tumors based on computed tomography: a retrospective multicenter observational study;Frontiers in Oncology;2024-03-05
2. Radiomics analysis of contrast-enhanced computerized tomography for differentiation of gastric schwannomas from gastric gastrointestinal stromal tumors;Journal of Cancer Research and Clinical Oncology;2024-02-09
3. Artificial intelligence in gastrointestinal endoscopy: a comprehensive review;Annals of Gastroenterology;2024
4. Differentiating gastric schwannoma from gastric stromal tumor (≤5 cm) by histogram analysis based on iodine-based material decomposition images: a preliminary study;Frontiers in Oncology;2023-11-17
5. Application of Machine Learning Based on Structured Medical Data in Gastroenterology;Biomimetics;2023-10-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3