Solutions to the Magnetic Ginzburg–Landau Equations Concentrating on Codimension-2 Minimal Submanifolds

Author:

Badran Marco,del Pino Manuel

Abstract

AbstractWe consider the magnetic Ginzburg–Landau equations in a compact manifold N$$\begin{aligned} \left\{ \begin{array}{l} -\varepsilon ^2{\varDelta }^Au = \frac{1}{2}(1-|u|^{2})u,\\ \varepsilon ^2d^*dA=\langle \nabla ^Au,iu\rangle . \end{array}\right. \end{aligned}$$ - ε 2 Δ A u = 1 2 ( 1 - | u | 2 ) u , ε 2 d d A = A u , i u . Here $$u:N\rightarrow \mathbb {C}$$ u : N C and A is a 1-form on N. We discuss some recent results on the construction of solutions exhibiting concentration phenomena near prescribed minimal, codimension 2 submanifolds corresponding to the vortex set of the solution. Given a codimension-2 minimal submanifold $$M\subset N$$ M N which is also oriented and non-degenerate, we construct a solution $$(u_{\varepsilon },A_{\varepsilon })$$ ( u ε , A ε ) such that $$u_\varepsilon $$ u ε has a zero set consisting of a smooth surface close to M. Away from M we have $$\begin{aligned} u_\varepsilon (x)\rightarrow \frac{z}{|z|},\quad A_\varepsilon (x)\rightarrow \frac{1}{|z|^2}(-z_2dz^1+z_1dz^2),\quad x=\exp _y(z^\beta \nu _\beta (y)) \end{aligned}$$ u ε ( x ) z | z | , A ε ( x ) 1 | z | 2 ( - z 2 d z 1 + z 1 d z 2 ) , x = exp y ( z β ν β ( y ) ) as $$\varepsilon \rightarrow 0$$ ε 0 , for all sufficiently small $$z\ne 0$$ z 0 and $$y\in M$$ y M . Here, $$\{\nu _1,\nu _2\}$$ { ν 1 , ν 2 } is a normal frame for M in N. These results improve, by giving precise quantitative information, a recent construction by De Philippis and Pigati (arXiv:2205.12389, 2022) who built solutions for which the concentration phenomenon holds in an energy, measure-theoretical sense. In addition, we consider the non-compact case $$N=\mathbb {R}^4$$ N = R 4 and the special case of a two-dimensional minimal surface in $$\mathbb {R}^3$$ R 3 , regarded as a codimension 2 minimal submanifold in $$\mathbb {R}^4$$ R 4 , with finite total curvature and non-degenerate. We construct a solution $$(u_\varepsilon ,A_\varepsilon )$$ ( u ε , A ε ) which has a zero set consisting of a smooth 2-dimensional surface close to $$M\times \{0\}\subset \mathbb {R}^4$$ M × { 0 } R 4 . Away from the latter surface we have $$|u_\varepsilon | \rightarrow 1$$ | u ε | 1 and asymptotic behavior as in (1).

Funder

none

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3