On the Negativity of Moduli Spaces for Polarized Manifolds

Author:

Zuo Kang

Abstract

AbstractGiven a log base space (Y, S), parameterizing a smooth family of complex projective varieties with semi-ample canonical line bundle, we briefly recall the construction of the deformation Higgs sheaf and the comparison map on (Y, S) made in the work by Viehweg–Zuo. While almost all hyperbolicities in the sense of complex analysis such as Brody, Kobayashi, big Picard and Viehweg hyperbolicities of the base U = YS (under some technical assumptions) follow from the negativity of the kernel of the deformation Higgs bundle we pose a conjecture on the topological hyperbolicity on U. In order to study the rigidity problem we then introduce the notions of the length and characteristic varieties of a family f : XY, which provide an infinitesimal characterization of products of sub log pairs in (Y, S) and an upper bound for the number of subvarieties appearing as factors in such a product. We formulate a conjecture on a characterization of non-rigid families of canonically polarized varieties.

Funder

Johannes Gutenberg-Universität Mainz

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3