Abstract
AbstractWe investigate the coupling of the minimal surface equation with a spinor of harmonic type. This arises as the Euler–Lagrange equations of the sum of the volume functional and the Dirac action, defined on an appropriated Dirac bundle. The solutions show a relation to Dirac-harmonic maps under some constraints on the energy-momentum tensor, extending the relation between Riemannian minimal surface and harmonic maps.
Funder
Scuola Internazionale Superiore di Studi Avanzati - SISSA
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Ammann, B., Ginoux, N.: Some examples of Dirac-harmonic maps. Lett. Math. Phys. 109, 1205–1218 (2019)
2. Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geomtry. Math. Z. 249, 545–580 (2005)
3. Bourguignon, J.-P., Gauduchon, P.: Spineurs, opérateurs de Dirac et variations de métriques. Commun. Math. Phys. 144, 581–599 (1992)
4. Chen, Q., Jost, J., Li, J., Wang, G.: Dirac-harmonic maps. Math. Z. 254, 409–432 (2006)
5. Deligne, P. et al (eds): Quantum Fields and Strings: A Course for Mathematicians. American Mathematical Society, Providence, RI (1999)