Solving Mathematical Programs with Complementarity Constraints Arising in Nonsmooth Optimal Control

Author:

Nurkanović ArminORCID,Pozharskiy Anton,Diehl Moritz

Abstract

AbstractThis paper examines solution methods for mathematical programs with complementarity constraints (MPCC) obtained from the time-discretization of optimal control problems (OCPs) subject to nonsmooth dynamical systems. The MPCC theory and stationarity concepts are reviewed and summarized. The focus is on relaxation-based methods for MPCCs, which solve a (finite) sequence of more regular nonlinear programs (NLP), where a regularization/homotopy parameter is driven to zero. Such methods perform reasonably well on currently available benchmarks. However, these results do not always generalize to MPCCs obtained from nonsmooth OCPs. To provide a more complete picture, this paper introduces a novel benchmark collection of such problems, which we call . The problem set includes 603 different MPCCs and we split it into a few representative subsets to accelerate the testing. We compare different relaxation-based methods, NLP solvers, homotopy parameter update and relaxation parameter steering strategies. Moreover, we check whether the obtained stationary points allow first-order descent directions, which may be the case for some of the weaker MPCC stationarity concepts. In the best case, the Scholtes’ relaxation (SIAM J. Optim. 11, 918–936, 2001) with  (Math. Program. 106, 25–57, 2006) as NLP solver manages to solve 73.8% of the problems. This highlights the need for further improvements in algorithms and software for MPCCs.

Funder

Bundesministerium für Wirtschaft und Klimaschutz

Deutsche Forschungsgemeinschaft

European Union

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3