Computing the Non-properness Set of Real Polynomial Maps in the Plane

Author:

El Hilany BoulosORCID,Tsigaridas Elias

Abstract

AbstractWe introduce novel mathematical and computational tools to develop a complete algorithm for computing the set of non-properness of polynomials maps in the plane. In particular, this set, which we call the Jelonek set, is a subset of $$\mathbb {K}^2$$ K 2 , where a dominant polynomial map $$f: \mathbb {K}^2 \rightarrow \mathbb {K}^2$$ f : K 2 K 2 is not proper; $$\mathbb {K}$$ K could be either $$\mathbb {C}$$ C or $$\mathbb {R}$$ R . Unlike all the previously known approaches we make no assumptions on f whenever $$\mathbb {K} = \mathbb {R}$$ K = R ; this is the first algorithm with this property. The algorithm takes into account the Newton polytopes of the polynomials. As a byproduct we provide a finer representation of the set of non-properness as a union of semi-algebraic curves, that correspond to edges of the Newton polytopes, which is of independent interest. Finally, we present a precise Boolean complexity analysis of the algorithm and a prototype implementation in maple.

Funder

DFG

FWF

ANR GALOP

Technische Universität Braunschweig

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3