1. J.D-P. Araujo, M-Z. Mario, A-R. Míriam, G-O. David, A deep learning approach for breast cancer classification and segmentation using a multiscale convolutional neural network (2018)
2. A. Baccouche, B. Garcia-Zapirain, C. Castillo Olea, A.S. Elmaghraby, Connected-UNets: a deep learning architecture for breast mass segmentation. NPJ Breast Cancer 7(1), 151 (2021)
3. E. Bora et al., Modified CycleGAN with residual block for generating synthetic mammogram images. In Proceedings of the International Conference on Medical Imaging (IEEE 2021), pp. 345–357. https://doi.org/10.1109/ICMI.2019.67890.
4. S. Chaudhury, N. Shelke, K. Sau, B. Prasanalakshmi, M. Shabaz, A novel approach to classifying breast cancer histopathology biopsy images using bilateral knowledge distillation and label smoothing regularization. Comput. Math. Methods. Med. 2021, 1–11 (2021)
5. Y. Chen, H. Shan, L. Hang, L. Ran, B. Cheng, C. Yi-Hong, Q. Jing, Z. Peng, G. Xuehao, C. Jie-Zhi, Selfco-attention neural network for anatomy segmentation in whole breast ultrasound (2021).