A New Method in Applying the Universal Wave Equation to Measure the Speed of Sound in Water as a Function of Temperature with Low Frequency Ultrasound

Author:

Check G. R.,Watson I. A.

Abstract

AbstractA new methodology was used to determine the speed of sound in water by using low frequency ultrasound over the temperature range 20 to 95° C. The initial procedure was developed based on finding the resonant locations over variable pathlengths in an acoustic tube and calculating their separation distances through the water, yielding the wavelength (λ) measurement. An in-house gain detector was employed to detect the resonant points, through detection of the amplitude voltage peaks in response to the displacement of the moving transmitter. The λ was calculated as 53 mm for water at 20° C with the fixed frequency of 28 kHz. As a result, using the universal wave equation, the speed of sound was estimated to be 1484 m/s with an accuracy of 99.89% compared to the references. The methodology was then followed through the second procedure to measure the sound speeds at temperatures higher than 20 °C, using coincidence frequency determination over different temperatures. In a fixed acoustic pathlength equal to the calculated λ at 20° C, the initial frequency, 28 kHz, was linearly swept to track the coincidence frequency corresponding to certain temperatures. The gain detector was used to obtain the coincidence frequencies, wherein the amplitude voltage peaks were recorded during the frequency adjustment. The simultaneous monitoring with an oscilloscope consolidated data when the phase differences between radiated and received waves were eliminated at the coincidence frequencies. The measured coincidence frequencies were then directly used to determine the speed of sound in water as function of temperature. The third order curve fitted to the results yielded an R2 equal to 0.9856, representing excellent agreement with the reference data.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3