Statistical Analysis of the Vibrations Transmitted From an Electric Kick Scooter to Riders

Author:

Vella A. D.ORCID,Digo E.,Gastaldi L.,Pastorelli S.,Vigliani A.

Abstract

AbstractIn recent years, micro-vehicles have been increasingly involved in urban mobility following the actual trend towards light, more affordable, and eco-friendly means of transportation. Among this vehicle category, the electric kick scooters (e-scooters) represent the most popular example driven by app-based sharing mobility services. Despite the positive implications, poor safety requirements and issues of discomfort are also related to this new segment. The recent spread of e-scooters is motivating the scientific community in investigating performance and ride comfort, in the attempt of improving vehicle design and safety regulations. The aim of this study is to evaluate e-scooter vibrations in driving in a realistic environment, constituted by bike path with seven speed bumps. Fourteen healthy young participants (seven males and seven females) are asked to conduct the test at two different constant velocities ($$5$$ 5 km/h and $$25$$ 25 km/h). Accelerations are acquired at the main human body segments as well as on the e-scooter. The assessment is based on identifying maxima and root mean squares from signal time histories. A non-parametrical statistical analysis is performed focusing on vibrations transmitted from vehicle to human body, e-scooter velocity, and some rider’s characteristics such as gender, mass, dominant arm, and dominant foot. Root mean squares and tests at low velocity generally underline a larger number of significant differences. Moreover, the parameter which mostly influences the system is the rider’s mass. Overall, the proposed methodology proves to be an efficient tool to investigate the vehicle-rider vibrational influence.

Funder

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3