Comparison of Different Approaches to Include Connection Elements into Frequency-Based Substructuring

Author:

Mahmoudi Ahmed ElORCID,Rixen Daniel J.,Meyer Christian H.

Abstract

AbstractDynamic substructuring (DS) is a research field that has gained a great deal of attention in both science and industry. The aim of DS techniques is to provide engineers in structural vibrations and sound practical solutions for analyzing the dynamic behavior of complex systems. This paper addresses the singularity problem that occurs when flexible joints are implemented as substructures into the Lagrange Multiplier Frequency-Based Substructuring (LM-FBS) coupling process. For illustration, we use rubber bushings from an automotive application. Considering the rubber isolators to exhibit hysteretic damping, we assume that only the property of the dynamic stiffness of material is given. To avoid singularity appearing in the admittance when inverting the impedance of a massless joint, we compare three different approaches to include rubber bushings in the framework of LM-FBS. One method consists in including the dynamic stiffness of material directly in the space of the interface constraints and add it to the assembled interface flexibility of the LM-FBS equation. This corresponds to a relaxation of the interface compatibility condition. In the second method, the rubber bushing is treated as a substructure by adding small masses to the equation of the joint. As a result, we obtain a nonsingular total dynamic stiffness matrix that can be included in the coupling process. The third method describes a novel extension of the LM-FBS approach, based on a solution for singular problems. If the applied forces are self-equilibrated with respect to the rigid body modes, a solution for the singular dynamic stiffness matrix exists. The methods are outlined, both mathematically and conceptually, based on a notation commonly used in LM-FBS. They facilitate the integration of connecting elements together with experimental or numerical determined system dynamics of substructures in order to predict the assembled system behavior.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3