Uncertainty Quantification for DIC Displacement Measurements in Industrial Environments

Author:

Siebert T.,Hack E.,Lampeas G.,Patterson E. A.ORCID,Splitthof K.

Abstract

AbstractBackground: most methods of uncertainty quantification for digital image correlation are orientated towards the research environment and it remains difficult to quantify all of the uncertainty introduced along the measurement chain in an industrial environment. This gap in capability can become critical when physical tests are required for certification purposes. Objective: To develop and demonstrate an uncertainty quantification method that was independent of a specific DIC system, easily integrated with the measurement workflow, applicable at the measurement location and capable of capturing the contributions from all sources of uncertainty. Methods: an elegant new method utilises the calibration target, commonly used with DIC systems to evaluate their intrinsic and extrinsic parameters, through reference measurements before and after relative motion between the measurement system and the object of interest. The method is described and demonstrated for quantifying the field of uncertainty associated with maps of displacement and deformation in a large-scale industrial component. Results: The fields of uncertainty associated with measurements, using stereoscopic DIC, of x-, y- and z- displacement components during a compression buckling test on an aircraft fuselage panel are presented. The derived uncertainty has independently been corroborated along one axis by moving a calibrated translation stage. Conclusions: A new method has been proposed that allows the quantification of the fields of uncertainty arising from all sources when DIC measurements are performed on a large-scale object of interest in an industrial environment. The method requires no additional equipment and can be readily included in the workflow of a measurement campaign.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3