Melding Boolean networks and reaction systems under synchronous, asynchronous and most permissive semantics

Author:

Bruni Roberto,Gori Roberta,Milazzo Paolo,Siboulet Hélène

Abstract

AbstractThis paper forges a strong connection between two well known computational frameworks for representing biological systems, in order to facilitate the seamless transfer of techniques between them. Boolean networks are a well established formalism employed from biologists. They have been studied under different (synchronous and asynchronous) update semantics, enabling the observation and characterisation of distinct facets of system behaviour. Recently, a new semantics for Boolean networks has been proposed, called most permissive semantics, that enables a more faithful representation of biological phenomena. Reaction systems offer a streamlined formalism inspired by biochemical reactions in living cells. Reaction systems support a full range of analysis techniques that can help for gaining deeper insights into the underlying biological phenomena. Our goal is to leverage the available toolkit for predicting and comprehending the behaviour of reaction systems within the realm of Boolean networks. In this paper, we first extend the behaviour of reaction systems to several asynchronous semantics, including the most permissive one, and then we demonstrate that Boolean networks and reaction systems exhibit isomorphic behaviours under the synchronous, general/fully asynchronous and most permissive semantics.

Funder

Università di Pisa

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3