From electric circuits to chemical networks

Author:

Cardelli LucaORCID,Tribastone Mirco,Tschaikowski Max

Abstract

Abstract Electric circuits manipulate electric charge and magnetic flux via a small set of discrete components to implement useful functionality over continuous time-varying signals represented by currents and voltages. Much of the same functionality is useful to biological organisms, where it is implemented by a completely different set of discrete components (typically proteins) and signal representations (typically via concentrations). We describe how to take a linear electric circuit and systematically convert it to a chemical reaction network of the same functionality, as a dynamical system. Both the structure and the components of the electric circuit are dissolved in the process, but the resulting chemical network is intelligible. This approach provides access to a large library of well-studied devices, from analog electronics, whose chemical network realization can be compared to natural biochemical networks, or used to engineer synthetic biochemical networks.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On a model of online analog computation in the cell with absolute functional robustness: Algebraic characterization, function compiler and error control;Theoretical Computer Science;2024-02

2. Rigorous engineering of collective adaptive systems – 2nd special section;International Journal on Software Tools for Technology Transfer;2023-11-14

3. A kinetic approach to investigate the collective dynamics of multi-agent systems;International Journal on Software Tools for Technology Transfer;2023-11-02

4. Formal lumping of polynomial differential equations through approximate equivalences;Journal of Logical and Algebraic Methods in Programming;2023-08

5. Minimization of Dynamical Systems over Monoids;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3