On the generative capacity of matrix insertion-deletion systems of small sum-norm

Author:

Fernau Henning,Kuppusamy Lakshmanan,Raman Indhumathi

Abstract

AbstractA matrix insertion-deletion system (or matrix ins-del system) is described by a set of insertion-deletion rules presented in matrix form, which demands all rules of a matrix to be applied in the given order. These systems were introduced to model very simplistic fragments of sequential programs based on insertion and deletion as elementary operations as can be found in biocomputing. We are investigating such systems with limited resources as formalized in descriptional complexity. A traditional descriptional complexity measure of such a matrix ins-del system is its size $$s=(k;n,i',i'';m,j',j'')$$ s = ( k ; n , i , i ; m , j , j ) , where the parameters from left to right represent the maximal matrix length, maximal insertion string length, maximal length of left contexts in insertion rules, maximal length of right contexts in insertion rules; the last three are deletion counterparts of the previous three parameters. We call the sum $$n+i'+i''+m+j'+j''$$ n + i + i + m + j + j the sum-norm of s. We show that matrix ins-del systems of sum-norm 4 and sizes (3; 1, 0, 0;  1, 2, 0), (3; 1, 0, 0;  1, 0, 2), (2; 1, 2, 0;  1, 0, 0), (2; 1, 0, 2;  1, 0, 0), and (2; 1, 1, 1;  1, 0, 0) describe the recursively enumerable languages. Moreover, matrix ins-del systems of sizes (3; 1, 1, 0;  1, 0, 0), (3; 1, 0, 1;  1, 0, 0), (2; 2, 1, 0;  1, 0, 0) and (2; 2, 0, 1;  1, 0, 0) can describe at least the regular closure of the linear languages. In fact, we show that if a matrix ins-del system of size s can describe the class of linear languages $$\mathrm {LIN}$$ LIN , then without any additional resources, matrix ins-del systems of size s also describe the regular closure of $$\mathrm {LIN}$$ LIN . Finally, we prove that matrix ins-del systems of sizes (2; 1, 1, 0;  1, 1, 0) and (2; 1, 0, 1;  1, 0, 1) can describe at least the regular languages.

Funder

Universität Trier

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. When Stars Control a Grammar's Work;Electronic Proceedings in Theoretical Computer Science;2023-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3