Iterative arrays with self-verifying communication cell

Author:

Kutrib MartinORCID

Abstract

Abstract We study the computational capacity of self-verifying iterative arrays ($${\text {SVIA}}$$ SVIA ). A self-verifying device is a nondeterministic device whose nondeterminism is symmetric in the following sense. Each computation path can give one of the answers yes, no, or do not know. For every input word, at least one computation path must give either the answer yes or no, and the answers given must not be contradictory. It turns out that, for any time-computable time complexity, the family of languages accepted by $${\text {SVIA}}$$ SVIA s is a characterization of the so-called complementation kernel of nondeterministic iterative array languages, that is, languages accepted by such devices whose complementation is also accepted by such devices. $${\text {SVIA}}$$ SVIA s can be sped-up by any constant multiplicative factor as long as the result does not fall below realtime. We show that even realtime $${\text {SVIA}}$$ SVIA are as powerful as lineartime self-verifying cellular automata and vice versa. So they are strictly more powerful than the deterministic devices. Closure properties and various decidability problems are considered.

Funder

Justus-Liebig-Universität Gießen

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3