Information theoretical properties of a spiking neuron trained with Hebbian and STDP learning rules

Author:

Chu DominiqueORCID

Abstract

AbstractUsing formal methods complemented by large-scale simulations we investigate information theoretical properties of spiking neurons trained using Hebbian and STDP learning rules. It is shown that weight space contains meta-stable states, which are points where the average weight change under the learning rule vanishes. These points may capture the random walker transiently. The dwell time in the vicinity of the meta-stable state is either quasi-infinite or very short and depends on the level of noise in the system. Moreover, important information theoretic quantities, such as the amount of information the neuron transmits are determined by the meta-stable state. While the Hebbian learning rule reliably leads to meta-stable states, the STDP rule tends to be unstable in the sense that for most choices of hyper-parameters the weights are not captured by meta-stable states, except for a restricted set of choices. It emerges that stochastic fluctuations play an important role in determining which meta-stable state the neuron takes. To understand this, we model the trajectory of the neuron through weight space as an inhomogeneous Markovian random walk, where the transition probabilities between states are determined by the statistics of the input signal.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3