Abstract
AbstractWe consider the problem of computing the Lyapunov exponents of reversible cellular automata (CA). We show that the class of reversible CA with right Lyapunov exponent 2 cannot be separated algorithmically from the class of reversible CA whose right Lyapunov exponents are at most $$2-\delta$$
2
-
δ
for some absolute constant $$\delta >0$$
δ
>
0
. Therefore there is no algorithm that, given as an input a description of an arbitrary reversible CA F and a positive rational number $$\epsilon >0$$
ϵ
>
0
, outputs the Lyapunov exponents of F with accuracy $$\epsilon$$
ϵ
. We also compute the average Lyapunov exponents (with respect to the uniform measure) of the reversible CA that perform multiplication by p in base pq for coprime $$p,q>1$$
p
,
q
>
1
.
Funder
Academy of Finland
Vilho, Yrjo and Kalle Vaisala Foundation
University of Turku (UTU) including Turku University Central Hospital
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications
Reference19 articles.
1. Blanchard F, Host B, Maass A (1996) Représentation par automate de fonctions continues de tore. J de théorie des nombres de Bordeaux 8(1):205–214
2. Cyr V, Franks J, Kra B (2019) The spacetime of a shift endomorphism. Trans Am Math Soc 371(1):461–488
3. D’amico M, Manzini G, Margara L (2003) On computing the entropy of cellular automata. Theor Comput Sci 290(3):1629–1646
4. Guillon P, Salo V (2017) Distortion in one-head machines and cellular automata. In: International Workshop on Cellular Automata and Discrete Complex Systems, pp. 120–138. Springer
5. Guillon P, Zinoviadis C (2012) Densities and entropies in cellular automata. In: Conference on Computability in Europe, pp. 253–263. Springer
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献