Agrobacterium-mediated transfer of the Fusarium graminearum Tri6 gene into barley using mature seed-derived shoot tips as explants

Author:

Gao DongyingORCID,Abdullah Sidrat,Baldwin Thomas,Caspersen Ann,Williams Edward,Carlson Alvar,Petersen Mike,Hu Gongshe,Klos Kathy Esvelt,Bregitzer Phil

Abstract

Abstract Key message We transferred the Tri6 gene into the elite barley GemCraft via new transformation method through shoot organogenesis and identified the rearrangements of transgenes and phenotypic variations in the transgenic plants. Abstract Despite its agronomic and economic importance, barley transformation is still very challenging for many elite varieties. In this study, we used direct shoot organogenesis to transform the elite barley cultivar GemCraft with the RNAi constructs containing Tri6 gene of Fusarium graminearum, which causes fusarium head blight (FHB). We isolated 4432 shoot tips and co-cultured these explants with Agrobacterium tumefaciens. A total of 25 independent T0 transgenic plants were generated including 15 events for which transgene-specific PCR amplicons were observed. To further determine the presence of transgenes, the T1 progenies of all 15 T0 plants were analyzed, and the expected PCR products were obtained in 10 T1 lines. Droplet digital (dd) PCR analysis revealed various copy numbers of transgenes in the transgenic plants. We determined the insertion site of transgenes using long-read sequencing data and observed the rearrangements of transgenes. We found phenotypic variations in both T1 and T2 generation plants. FHB disease was evaluated under growth chamber conditions, but no significant differences in disease severity or deoxynivalenol accumulation were observed between two Tri6 transgenic lines and the wildtype. Our results demonstrate the feasibility of the shoot tip transformation and may open the door for applying this system for genetic improvement and gene function research in other barley genotypes.

Funder

Agricultural Research Service

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3