LsMybW-encoding R2R3-MYB transcription factor is responsible for a shift from black to white in lettuce seed

Author:

Seki KousukeORCID,Komatsu KenjiORCID,Yamaguchi Kanami,Murai YoshinoriORCID,Nishida Keiji,Koyama Ryohei,Uno YuichiORCID

Abstract

Abstract Key message We identified LsMybW as the allele responsible for the shift in color from black to white seeds in wild ancestors of lettuce to modern cultivars. Abstract Successfully selected white seeds are a key agronomic trait for lettuce cultivation and breeding; however, the mechanism underlying the shift from black—in its wild ancestor—to white seeds remains uncertain. We aimed to identify the gene/s responsible for white seed trait in lettuce. White seeds accumulated less proanthocyanidins than black seeds, similar to the phenotype observed in Arabidopsis TT2 mutants. Genetic mapping of a candidate gene was performed with double-digest RAD sequencing using an F2 population derived from a cross between “ShinanoPower” (white) and “Escort” (black). The white seed trait was controlled by a single recessive locus (48.055–50.197 Mbp) in linkage group 7. Using five PCR-based markers and numerous cultivars, eight candidate genes were mapped in the locus. Only the LG7_v8_49.251Mbp_HinfI marker, employing a single-nucleotide mutation in the stop codon of Lsat_1_v5_gn_7_35020.1, was completely linked to seed color phenotype. In addition, the coding region sequences for other candidate genes were identical in the resequence analysis of “ShinanoPower” and “Escort.” Therefore, we proposed Lsat_1_v5_gn_7_35020.1 as the candidate gene and designated it as LsMybW (Lactuca sativaMyb White seeds), an ortholog encoding the R2R3-MYB transcription factor in Arabidopsis. When we validated the role of LsMybW through genome editing, LsMybW knockout mutants harboring an early termination codon showed a change in seed color from black to white. Therefore, LsMybW was the allele responsible for the shift in seed color. The development of a robust marker for marker-assisted selection and identification of the gene responsible for white seeds have implications for future breeding technology and physiological analysis.

Funder

Ministry of Agriculture, Forestry and Fisheries

Kobe University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3