Lie symmetry analysis and Painlevé analysis of the new (2+1)-dimensional KdV equation
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics
Link
http://link.springer.com/content/pdf/10.1007/s11766-007-0209-2.pdf
Reference9 articles.
1. Olver P J. Applications of Lie Groups to Differential Equations, New York: Springer-Verlag, 1986.
2. Bluman G W, Kumei S. Symmetries and Differential Equations, New York: Springer-Verlag, 1989.
3. Weiss J, Tabor M, Carnevale G. The Painlevé property for partial differential equations, J Math Phys, 1983, 24: 522–526.
4. Jimbo M, Kruskal M D, Miwa T. Painlevé test for the self-dual Yang-Mills equations, Phys Lett A, 1982, 92: 59–60.
5. Conte R. Invariant Painlevé analysis for partial differential equations, Phys Lett A, 1989, 140: 383–390.
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. New coherent structures and interaction behavior for the new (2+1)-dimensional Korteweg-de Vries equation;Chaos, Solitons & Fractals;2024-07
2. Overtaking collisions of m shock waves and interactions of n(n→∞)-lump, m(m→∞)-solitons, τ(τ→∞)-periodic waves solutions to a generalized (2+1)-dimensional new KdV model;Chinese Journal of Physics;2022-12
3. Double-periodic soliton solutions for the new (2 + 1)-dimensional KdV equation in fluid flows and plasma physics;Analysis and Mathematical Physics;2020-09-04
4. An effective approach for constructing novel KP-like equations;Waves in Random and Complex Media;2020-07-15
5. Exact solitary wave solutions to the (2 + 1)-dimensional generalised Camassa–Holm–Kadomtsev–Petviashvili equation;Pramana;2020-01-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3