Texture and Grain Boundary Network Evolution of Laser Powder Bed Fusion Processed Pure Ni During Post-printing Annealing

Author:

Beladi Hossein,Torbati-Sarraf Hamidreza,Rohrer Gregory S.,Poorganji Behrang,Torbati-Sarraf Seyed Alireza

Abstract

AbstractCommercially pure Ni was additively manufactured using laser powder bed fusion. The printed specimens were then subjected to annealing treatments in a range of 700 °C to 1200 °C to investigate the evolution of the microstructure using electron backscatter diffraction mapping and a five-parameter analysis of the grain boundary character distribution. The post-printing annealing treatment resulted in microstructural changes in respect to grain shape and size, the grain boundary character distribution and the overall texture. However, the extent of these changes strongly depended on the annealing temperature. The grain structure and overall texture changed only modestly when annealed below 900 °C. The grains grew by about 10 pct and this led to a small (≈ 15 pct) increase in the areas of boundaries with low energy (111) planes at the expense of higher energy grain boundary planes with the (001) orientation. Static recrystallization was the dominant microstructure evolution mechanism at annealing temperatures greater than 1000 °C, where new equiaxed grains replaced the initial printed microstructure, enhancing the relative areas of low energy grain boundaries (i.e., $$\sum 3$$ 3 and $$\sum 9$$ 9 ) by a factor of more than five. This change increased the population of boundaries with the low energy (111) plane by a factor of five and decreased the strength of the texture by more than 50 pct through twinning. The resultant microstructure is expected to ultimately improve the material properties, where the increase in the relative areas of $$\sum 3$$ 3 boundaries would enhance the corrosion resistance and fracture toughness of material, and the texture weakening diminishes the anisotropy in mechanical behaviour.

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3