Novel Control Factor for Tensile Strength and Solidification Cracking in Partially Solidified Al–Mn–Cu Alloy Based on Campbell’s Model with Fe-Rich Intermetallic Compounds

Author:

Nagata Yoshihiro,Nakagawa Ryohei,Kumaki Takumi,Matsushita Akira,Yaguchi Kenichi,Sakamoto Toshio,Orio Kanta,Okimura Yasuhiko,Okane Toshimitsu,Muhammad Khairi Faiz,Yoshida Makoto

Abstract

AbstractIn this study, the effect of the Fe-rich intermetallic compound phases (IMC) on the solidification cracking susceptibility (Hot Tearing Susceptibility, HTS) of the Al–Mn–Cu alloy and the associated controlling factors were investigated. Using the Al–1.15Mn–1.0Cu–0.5Si–0.08Ti–0.016B–0.15Fe and Al–1.15Mn–1.0Cu–0.5Si–0.08Ti–0.016B–0.4Fe alloys, the HTS and mechanical properties in the partially solidified state were experimentally obtained. As a result, the HTS decreased with the increasing Fe contents. In addition, the tensile strength of the alloys in the partially solidified state (σmax) increased with the increasing Fe contents. The fraction of solid cohesion considering the Fe-rich IMC phase (fsc IMC) based on the Campbell’s model (fsc Campbell) is proposed as the controlling factor of σmax. The fsc Campbell, which simulates the two-phases model of the α-Al and liquid phases, did not consistently demonstrate the dependence of σmax on fsc Campbell for the two alloys (σmax = f(fsc Campbell)). However, when employing the fsc IMC, which incorporates the Fe-rich IMC phase in a three-phases model, a consistent correlation is observed between fsc IMC and σmax for the two alloys (σmax = f(fsc IMC)). Therefore, it is suggested that the controlling factor influencing the change in σmax with the Fe content should be the fsc IMC. Additionally, the bonding of primary α-Al phase together with Fe-rich IMC phase that is crystallized at the grain boundary will increase σmax, contributing to the reduction of HTS.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3