Revisiting “Steady-State” Monotonic and Cyclic Deformation: Emphasizing the Quasi-Stationary State of Deformation

Author:

Mughrabi Haël

Abstract

AbstractHigh-temperature creep, cyclic deformation in saturation, and a number of technologically important processes are typical examples of the so-called “steady-state” deformation. These cases are usually defined in terms of the constancy of the mechanical parameters. Moreover, it is usually assumed that the deformation-induced microstructure undergoes no further changes. However, clear evidence shows that non-negligible microstructural changes continue to occur in the so-defined steady-state high-temperature creep and in cyclic saturation. It can be shown that the so-called “steady-state” deformation is actually a quasi-stationary deformation which is characterized by the initial development of a “mechanical steady state”, which is followed with a delay by a “microstructural steady state.” Only the latter can then be considered as a true steady state. A deeper analysis reveals a persistent slight increase of the dislocation density, with geometrically necessary dislocations in the cell walls/subgrain boundaries, causing the latter to transform gradually into sharper boundaries with higher misorientations. These findings, based on a detailed analysis of a wide range of experimental studies, are found to be almost identical for both high-temperature creep and cyclic deformation in saturation and are hence considered as characteristic of quasi-stationary deformation. The analysis clarifies, as a by-product, specific effects which arise from the increasing heterogeneity of the dislocation pattern (patterning). Thus, a marked decrease of the arrangement factor “alpha” in the Taylor flow stress is noted, as patterning proceeds, in agreement with predictions of the so-called composite model. Since this effect is compensated partially by the increase of the dislocation density, the flow stress remains rather insensitive to subtle microstructural changes. Based on these facts, the need for revision of current flow-stress formulations in future dislocation modeling is emphasized.

Funder

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Reference62 articles.

1. W.A. Backofen, 1972, Deformation processing, Addison-Wesley Pub. Co., p. 227.

2. P. Montmitonnet: Materials Processing and Design, Modeling, Simulation and Applications, NUMIFORM ’07: 9th International Conferenceon Numerical Methods in Industrial Forming Processes, 2007, pp. 209–14.

3. R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, A. Bachmaier: 2010, Annual Review of Materials Research, 40, 319-343.

4. O. Renk, A. Hohenwarter, S. Wurster, R. Pippan: 2014, Acta materialia, 77, 401-410.

5. M. D. Zoback, J. Townsend, B. Grollimund: 2002, Int. Geology Review, 44, 383-401.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3