The Reliability of Single-Step and Double-Step Quench and Partitioning Heat Treatments on an AISI 420A Low Carbon Martensitic Stainless Steel

Author:

Barella S.,Gruttadauria A.,Menezes J. T. O.,Castrodeza E. M.,Quaini S. E.,Pelligra C.,McNally E. A.

Abstract

AbstractThe microstructural and mechanical effects of various single-step (SS) and double-step (DS) quench and partition (Q&P) heat treatments applied to an AISI 420A low carbon martensitic stainless steel (MSS) has been studied. The goal with this work is to reach a total elongation (E pct) of 12 pct and an ultimate tensile strength (UTS) above 1200/1300 MPa, but ultimately to achieve a superior strength-ductility balance in comparison to its traditional Quench and Temper (Q&T) counterpart. This is being done by retaining austenite within the steel’s martensitic matrix at room temperature (RT) using novel SS and conventional DS Q&P heat treatments. Considerable work has been done to optimize DS Q&P heat treatments, but little has been done to understand the effects of removing a subsequent heating cycle through SS Q&P heat treatments has on MSSs. With that being said, partitioning is performed at the same quench interruption temperature for the SS Q&P heat treatments, and reheated to a higher temperature for the DS Q&P heat treatments. Experimental investigations were carried out on 1 mm thick, sheet samples to increase the number of potential applications for this steel and heat treatment. The microstructure of different SS and DS Q&P heat treatments was investigated through X-ray diffraction (XRD) and transmission electron microscopy (TEM) while mechanical property investigations were carried out using tensile and fracture toughness testing. DS Q&P heat treated samples quenched to 130 °C and partitioned for industrially relevant times of 10 and 30 minutes featured the highest values in terms of total elongation, tensile strength and fracture toughness. The SS Q&P heat treatments, on the other hand, were able to achieve improved mechanical properties to its Q&T counterpart. Overall, this work opens up the possibility of increased MSS usage for reliable, thin-walled component production with improved properties through Q&P heat treatment methods. The best results achieved in this study are a UTS of 1585 MPa, E pct of 22 pct, and a fracture toughness of 77 kJ/m2. Their lower total elongation of 9.6 pct is balanced by high tensile strength of 1812 MPa, ensuring higher toughness compared to traditional Q&T samples.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3