Effects of Solidification Conditions on Grain Refinement Capacity of TiC in Directionally Solidified Ti6Al4V Alloy

Author:

Date Naoki,Yamamoto Shunya,Watanabe Yoshimi,Sato Hisashi,Nakano Shizuka,Sato Naoko,Suzuki Shinsuke

Abstract

AbstractIn this study, the effects of solidification conditions on the grain refinement capacity of heterogeneous nuclei TiC in directionally solidified Ti6Al4V alloy were investigated using experimental and numerical approaches. Ti6Al4V powder with and without TiC particles in a Ti6Al4V sheath was melted and directionally solidified at various solidification rates via the floating zone melting method. In addition, by using the phase field method, the microstructural evolution of directionally solidified Ti6Al4V was simulated by varying the temperature gradient G and solidification rate V. As the solidification rate increased, the increment of the prior β grain number by TiC addition also increased. There are two reasons for this: first, the amount of residual potent heterogeneous nuclei TiC is larger. Second, the amount of TiC particles that can nucleate becomes larger. This is because increasing the constitutional undercooling ΔTc leads to the activation of a smaller radius of heterogeneous nuclei and a higher nucleation probability from each radius. At a cooling rate R higher than that in the floating zone melting experiment (R = 3 to 1000 K/s), the maximum degree of constitutional undercooling ΔTc,Max has a peak value, which suggests that constitutional undercooling ΔTc has a smaller contribution at higher cooling rates, such as those that occur during electron beam melting (EBM), including laser powder bed fusion (LPBF).

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3