Achieving a Columnar-to-Equiaxed Transition Through Dendrite Twinning in High Deposition Rate Additively Manufactured Titanium Alloys

Author:

Davis A. E.,Wainwright J.,Sahu V. K.,Dreelan D.,Chen X.,Ding J.,Flint T.,Williams S.,Prangnell P. B.

Abstract

AbstractThe coarse β-grain structures typically found in titanium alloys like Ti–6Al–4V (wt pct, Ti64) and Ti–6Al–2Sn–4Zr–2Mo–0.1Si (Ti6242), produced by high deposition rate additive manufacturing (AM) processes, are detrimental to mechanical performance. Certain modified processing conditions have been shown to lead to a more refined grain structure, which has generally been attributed to a change in the solidification conditions with respect to the experimental Hunt diagram proposed by Semiatin and Kobryn. It is shown that with Wire Arc AM (WAAM) increasing the wire feed speed (WFS) is effective in promoting a columnar-equiaxed transition (CET). Conversely, estimates of the dendrite-tip undercooling using the KGT model suggest that this will be too small for free nucleation without the addition of artificial nucleants, due to the very low solute partitioning in Ti alloys. It is also shown that it is difficult to promote a CET with plasma transferred arc WAAM as computational fluid dynamics (CFD) melt-pool simulations indicate that the solidification parameters remain within the columnar region on the Semiatin-Kobryn Hunt map, within the constraints of a stable process. However, a high fraction of twin boundaries was observed in the refined β-grain structures seen at high WFS. This has been attributed to departure of $$\left\langle {001} \right\rangle _{\beta }$$ 001 β alignment from the direction of maximum thermal gradient, caused by the curvature of the fusion boundary, stimulating dendrite twinning during solidification. In addition, it is shown that increasing the WFS leads to a change in melt-pool geometry and a reduction of remelt depth, which promoted dendrite twinning and grain refinement.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3