Modelling the Age-Hardening Precipitation by a Revised Langer and Schwartz Approach with Log-Normal Size Distribution

Author:

Zhao Dongdong,Xu Yijiang,Gouttebroze Sylvain,Friis Jesper,Li Yanjun

Abstract

AbstractA new numerical modelling approach integrating the Langer and Schwartz approach and log-normal particle size distribution has been developed to depict the precipitation kinetics of age-hardening precipitates in Al alloys. The modelling framework has been implemented to predict the precipitation behavior of the key secondary phases in 6xxx and 7xxx Al alloys subjected to artificial aging. The simulation results are in good agreement with the available experimental data in terms of precipitate number density, radius, and volume fraction. The initial shape parameter of the log-normal size distribution entering the modeling framework turns to play an important role in affecting the later-stage evolution of precipitation. It is revealed that the evolution of size distribution is not significant when a small shape parameter is adopted in the modelling, while an initial large shape parameter will cause substantial broadening of the particle size distribution during aging. Regardless of the magnitude of shape parameter, a broadening of the particle size distribution as predicted by the present model is in agreement with experimental observations. It is also shown that large shape parameter will accelerate the coarsening rate at later aging stage, which induces fast decreasing of number density and increased growth rate of mean/critical radius. A comparison to the Euler-like multi-class approach demonstrates that the integration of more realistic log-normal distribution and Langer and Schwartz model make the present modelling faster and equivalently accurate in precipitation prediction.

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3