Tailoring Microstructure and Mechanical Properties of Additively Manufactured Inconel 625 by Remelting Strategy in Laser Powder Bed Fusion

Author:

Ledwig PiotrORCID,Pasiowiec HubertORCID,Cichocki Kamil,Lisiecka-Graca PaulinaORCID,Gola KewinORCID,Wróbel RafałORCID,Dubiel BeataORCID

Abstract

AbstractThis study investigates the effect of laser power applied for a remelting scan in the laser powder bed fusion process on the formation of a bimodal microstructure and its impact on the mechanical properties of Ni-based Inconel 625 superalloy. Comparison of primary and remelting scans at similar surface energy densities revealed that the melt pools obtained in the remelting scan are smaller than in the primary scan. To achieve comparable remelted melt pool sizes, the 25 pct increase in energy is required. The shape and size of the remelted melt pools significantly affect the microstructure and material texture. The lower surface energy density in laser powder bed fusion favors the formation of a bimodal microstructure with large columnar grains and fine grain bands. Application of higher energy results in the formation of large columnar grains with Goss texture along build direction and separated by a large amount of low angle grain boundaries. Remelting scan also affects reduction of porosity and increasing of the area fraction of nanometric oxide inclusions. The study revealed that the samples subjected to a remelting laser scan and tensile tested along the direction of columnar grains exhibited higher ductility, which was associated with a slight decrease in the ultimate tensile strength compared to the samples that were not remelted. It was demonstrated that the remelting scan in the laser powder bed fusion process offers the possibility of improving the reliability of additively manufactured Inconel 625 superalloy by reducing porosity and tailoring its microstructure towards single-crystal-like, and thus improving the mechanical properties. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3