A Limit to Accelerated Free-Sintering: Nano-Phase Separation Interferes With Organic Debinding

Author:

Naunheim Yannick,Perrin Alice,Oliver Christian E.,Stone Katherine,Schuh Christopher A.

Abstract

AbstractNano-phase separating Ni–12 at. pct Ag powders are processed via high-energy ball milling and brought into a supersaturated state with a reduction of the grain size to the nanocrystalline scale, a combination that is designed to encourage rapid densification by phase separation upon heating. This unstable powder is then characterized by dilatometry, in-situ x-ray diffraction, thermogravimetry and microstructure analysis for sintering cycles up to 940 °C. However, these powder compacts exhibit excessive pore evolution and significant macroscopic swelling caused by removal of the organic process additives. This competition of organic removal with densification is known in nanocrystalline metals, but the present study adds an additional dimension of phase separation, which shifts the dominant swelling mechanism as the formation of the second phase traps the volatilizing organics and hinders the debinding process. The creep swelling and overall loss in relative density is then dominated by the creep deformation of the second Ag phase. The interference between organic removal and low-temperature onset of consolidation represents a new challenge to efforts aimed at rapid free sintering and should guide the design of rapidly sintering alloys; specifically, the present work emphasizes the need to select alloys that have their sintering-accelerating phase separation temperature above the range where gases are evolved.

Funder

Massachusetts Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3