In-Situ X-ray Diffraction Analysis of Metastable Austenite Containing Steels Under Mechanical Loading at a Wide Strain Rate Range

Author:

Isakov Matti,Langi Veera,Pun Lalit,Soares Guilherme Corrêa,Kantor Innokenty,Jørgensen Mads Ry Vogel,Hokka Mikko

Abstract

AbstractThis paper presents and discusses the methodology and technical aspects of mechanical tests carried out at a wide strain rate range with simultaneous synchrotron X-ray diffraction measurements. The motivation for the study was to develop capabilities forin-situcharacterization of the loading rate dependency of mechanically induced phase transformations in steels containing metastable austenite. The experiments were carried out at the DanMAX beamline of the MAX IV Laboratory, into which a custom-made tensile loading device was incorporated. The test setup was supplemented within-situoptical imaging of the specimen, which allowed digital image correlation-based deformation analysis. All the measurement channels were synchronized to a common time basis with trigger signals between the devices as well as post-test fine tuning based on diffraction ring shape analysis. This facilitated precise correlation between the mechanical and diffraction data at strain rates up to 1 s−1corresponding to test duration of less than one second. Diffraction data were collected at an acquisition rate of 250 Hz, which provided excellent temporal resolution. The feasibility of the methodology is demonstrated by providing novel data on the kinetics of the martensitic phase transformation in EN 1.4318-alloy following a rapid increase in strain rate (a so-called jump test).

Funder

Tampere University including Tampere University Hospital, Tampere University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3