Bridging Capillary-Driven Fragmentation and Grain Transport with Mixed Columnar-Equiaxed Solidification

Author:

Rodrigues Christian M. G.,Wu Menghuai,Zhang Haijie,Ludwig Andreas,Kharicha Abdellah

Abstract

AbstractIn this study, a first attempt is made to bridge capillary-driven fragmentation and grain transport using a mixed columnar-equiaxed solidification model. Grain transport is an intrinsic feature of the employed solidification model which has been extensively investigated over the years. Regarding the capillary-driven fragmentation event, a new correlation between the number of fragments and interfacial area density of the columnar structure was recently established by Cool and Voorhees (2017) based on experimental research under isothermal conditions. Here, we propose to modify Cool and Voorhees’ equation to extend its range of applicability to the solidification-dominant stage without destroying the agreement with the reported measurements in the coarsening-dominant stage. With this improvement in the mixed columnar-equiaxed solidification model, capillary effects can be isolated from the motion of the phases during fragmentation events, which facilitates understanding of the results. Under pure diffusive solidification conditions (no flow or crystal sedimentation), the simulation results were validated against phase-field simulations. In more realistic scenarios where liquid flow and fragment sedimentation are both considered, the simulations indicate very reasonable results for the detection of columnar-to-equiaxed transition, which suggests that the newly proposed model can be an important tool for industrial casting applications. Moreover, flow direction and intensity were shown to affect the potential for local fragmentation. Graphic Abstract

Funder

Montanuniversität Leoben

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3