A Crystallographic Basis for Critically Evaluating the Mechanisms for Secondary Grain Formation During Directional Solidification

Author:

D’Souza N.,Edmonds I. M.,Perry M.,Collins D. M.

Abstract

AbstractA crystallography-based method is presented for the critical appraisal of possible mechanisms that trigger the formation of secondary grains during directional solidification. The method permits an analysis of a large population of defects, while avoiding the pitfalls of the metallographic sectioning approach that is affected by dendrite stereology. Here, the nickel-base superalloy CMSX-4, an alloy commonly used for single crystal turbine blade applications, is studied. All secondary grains originate exclusively at the external surface and when the off-axial primary $$\langle 0\,0\,1\rangle$$ 0 0 1 crystal orientations are measured, are evident at both the converging and diverging dispositions of the single crystal primary dendrites without a noticeable bias. Almost all of the secondary grains have low misorientations, with an average misorientation between 5 to 15 deg. No systematic deviation between the individual $$\langle 0\,0\,1\rangle$$ 0 0 1 orientations of the secondary grain and the single crystal is observed. A significant twist contribution about an axis within ~ 30 deg from one of the secondary arms occurs when primary arms converge on the external surface, but both twist and tilt prevail for the diverging case. Both nucleation and buoyancy driven thermo-solutal convection can be eliminated as potential mechanisms. Thermo-mechanical deformation is deduced to be the most likely mechanism; deformation must originate in the vicinity of the primary dendrite tips. It is proposed that dendrite deflection arises primarily from the resistance encountered by the primary tips with the external surface during axial contraction in the presence of a dominant vertical thermal gradient.

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3