Interaction Between Ferrite Recrystallization and Austenite Formation in Dual-Phase Steel Manufacture

Author:

Bandi Bharath,Van Krevel Joost,Srirangam Prakash

Abstract

AbstractIn this publication, the effect of heating rate on microstructural evolution of manganese segregated cold reduced dual phase steels is systematically studied for different inter-critical temperatures and holding times. At slow heating rate, completion of ferrite recrystallization before austenite formation led to the preferential formation of austenite on the ferrite grain boundaries leading to a necklace austenite (now martensite) morphology. The slower austenite formation kinetics has been attributed to longer diffusion paths dictated by larger ferrite grain sizes. In medium heating rate condition, microstructure before austenite formation had partially recrystallized ferrite and partially spheroidized cementite. Rapid austenite growth occurred along the rolling direction in carbon-rich cementite regions and dislocation-rich recovered ferrite regions. The presence of partially recrystallized ferrite grains restricted the austenite growth in the normal direction and therefore enabled the formation of thin martensite bands parallel to the rolling direction. At fast heating rate, the microstructure before austenite formation predominately contained un-recrystallized ferrite and un-spheroidized cementite and therefore enabled faster austenite formation kinetics. Thicker martensite bands are formed at fast heating rates due to the absence of recrystallized grains, thereby, enabling the growth of austenite in all directions with a higher preference to the rolling direction.

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3