Deconstructing the Retained Austenite Stability: In Situ Observations on the Austenite Stability in One- and Two-Phase Bulk Microstructures During Uniaxial Tensile Tests

Author:

Kumpati Joshua,Rolland Manon Bonvalet,Hasan Sk. Md.,Shanks Katherine S.,Hedström Peter,Borgenstam Annika

Abstract

AbstractGiven the critical role that metastable retained austenite (RA) plays in advanced high-strength steel (AHSS), there is significant interest in obtaining a comprehensive understanding of its stability, to achieve excellent mechanical properties. Despite considerable attention and numerous studies, the significance of individual contributions of various microstructural factors (size, crystallographic orientation, surrounding phases, etc.) on the stability of RA remain unclear, partly due to the difficulty of isolating the direct effects of these factors. In this study, we examined the influence of microstructural factors while minimizing the effect of chemical composition on the mechanical stability of RA. We accomplished this by comparing the austenite (γ) stability in two distinct microstructures: a two-phase RA/martensite microstructure and a one-phase γ microstructure, both with nearly identical γ compositions. We employed in situ high-energy X-ray diffraction during uniaxial tensile testing conducted at both room temperature and 100 °C, facilitating the continuous monitoring of microstructural changes during the deformation process. By establishing a direct correlation between the macroscopic tensile load, phase load partitioning, and the γ/RA transformation, we aimed to understand the significance of the microstructural factors on the mechanical stability of the RA. The results indicate that very fine RA size and the surrounding hard martensitic matrix (aside from contributing to load partitioning) contribute less significantly to RA stability during deformation than expected. The findings of this study emphasize the critical and distinct influence of microstructure on γ/RA stability.

Funder

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3