The Isothermal Oxidation of a New Polycrystalline Turbine Disk Ni-Based Superalloy at 800 °C and Its Modification with Pre-oxidation

Author:

Wo J. W. X.,Pang H. T.,Wilson A. S.,Hardy M. C.,Stone H. J.

Abstract

AbstractNi-based superalloys with enhanced oxidation resistance at high temperatures are crucial for next-generation gas turbine engines. A new polycrystalline Ni-based superalloy (C19) that combines improved microstructural stability with environmental resistance has been developed. Its oxidation resistance has been determined through measurements of the specific mass change and morphological evolution of the formed oxides following furnace exposures at 800 °C in air for up to 1000 hours; the results of which were benchmarked against Nimonic 105. C19 showed hybrid Type II/Type III behavior as a marginal Al2O3 former and performed similarly to established superalloys at 750 °C. The Wagner model for the transition from internal to external oxide formation predicted that C19 should form a continuous Al2O3 scale at higher temperatures. A pre-oxidation treatment at 1100 °C for 1 hour was, therefore, selected and shown to dramatically improve the oxidation resistance during subsequent exposure at 800 °C. Oxide cross-sectional analysis showed that C19 formed a continuous and protective Al2O3 scale after the pre-oxidation treatment, whereas Nimonic 105 retained discontinuous Al2O3 finger-like intrusions beneath a Cr2O3 overscale.

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3